snakia.core.es

Classes

Action(**data)

Dispatcher()

Event dispatcher

Event(**data)

Filter(*args, **kwargs)

Filter for an event.

Handler(*args, **kwargs)

Handler for an event.

Subscriber(handler, filters, priority)

Subscriber for an event.

class snakia.core.es.Action(**data)[source]

Bases: BaseModel

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

classmethod construct(_fields_set=None, **values)
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)
Return type:

Dict[str, Any]

classmethod from_orm(obj)
Return type:

Self

classmethod go_start()[source]

Go to the first handler.

Return type:

Action

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)
Return type:

str

model_computed_fields = {}
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

Return type:

Self

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Args:
_fields_set: A set of field names that were originally explicitly set during instantiation. If provided,

this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)
Return type:

Self

!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)
Return type:

dict[str, Any]

!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A set of fields to include in the output. exclude: A set of fields to exclude from the output. context: Additional context to pass to the serializer. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)
Return type:

str

!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. context: Additional context to pass to the serializer. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

model_fields = {'move': FieldInfo(annotation=int, required=False, default=1)}
property model_fields_set: set[str]

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')

Generates a JSON schema for a model class.

Return type:

dict[str, Any]

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Return type:

str

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(context, /)

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Return type:

bool | None

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)

Validate a pydantic model instance.

Return type:

Self

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)
Return type:

Self

!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

Raises:

ValidationError: If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)

Validate the given object with string data against the Pydantic model.

Return type:

Self

Args:

obj: The object containing string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

move: int
classmethod next(count=1)[source]

Skip one handler.

Return type:

Action

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)
Return type:

Self

classmethod parse_obj(obj)
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)
Return type:

Self

classmethod prev(count=1)[source]

Go back one handler.

Return type:

Action

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)
Return type:

str

classmethod skip(count=1)[source]

Skip n handlers.

Return type:

Action

Args:

count (int): The number of handlers to skip.

classmethod stop()[source]

Skip all handlers.

Return type:

Action

classmethod update_forward_refs(**localns)
Return type:

None

classmethod validate(value)
Return type:

Self

class snakia.core.es.Dispatcher[source]

Bases: object

Event dispatcher

__init__()[source]
property is_running: bool

Returns True if the dispatcher is running.

on(event, filter=None, priority=-1)[source]

Decorator to subscribe to an event.

Return type:

Callable[[Handler[TypeVar(T, bound= Event)]], Handler[TypeVar(T, bound= Event)]]

publish(event)[source]

Add an event to the queue.

Return type:

None

start()[source]

Start the update loop.

Return type:

None

stop()[source]

Stop the update loop.

Return type:

None

subscribe(event_type, subscriber)[source]

Subscribe to an event type.

Return type:

None

unsubscribe(event_type, subscriber)[source]

Unsubscribe from an event type.

Return type:

None

update(block=False)[source]

Update the dispatcher.

Return type:

None

class snakia.core.es.Event(**data)[source]

Bases: ABC, BaseModel

__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

classmethod construct(_fields_set=None, **values)
Return type:

Self

copy(*, include=None, exclude=None, update=None, deep=False)

Returns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `

Args:

include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied.

Returns:

A copy of the model with included, excluded and updated fields as specified.

dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)
Return type:

Dict[str, Any]

classmethod from_orm(obj)
Return type:

Self

json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)
Return type:

str

model_computed_fields = {}
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(_fields_set=None, **values)

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

Return type:

Self

!!! note

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.

Args:
_fields_set: A set of field names that were originally explicitly set during instantiation. If provided,

this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.

values: Trusted or pre-validated data dictionary.

Returns:

A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)
Return type:

Self

!!! abstract “Usage Documentation”

[model_copy](../concepts/serialization.md#model_copy)

Returns a copy of the model.

!!! note

The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Args:
update: Values to change/add in the new model. Note: the data is not validated

before creating the new model. You should trust this data.

deep: Set to True to make a deep copy of the model.

Returns:

New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)
Return type:

dict[str, Any]

!!! abstract “Usage Documentation”

[model_dump](../concepts/serialization.md#modelmodel_dump)

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Args:
mode: The mode in which to_python should run.

If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.

include: A set of fields to include in the output. exclude: A set of fields to exclude from the output. context: Additional context to pass to the serializer. by_alias: Whether to use the field’s alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)
Return type:

str

!!! abstract “Usage Documentation”

[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)

Generates a JSON representation of the model using Pydantic’s to_json method.

Args:

indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. context: Additional context to pass to the serializer. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of None. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors,

“error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].

fallback: A function to call when an unknown value is encountered. If not provided,

a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.

serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.

Returns:

A JSON string representation of the model.

property model_extra: dict[str, Any] | None

Get extra fields set during validation.

Returns:

A dictionary of extra fields, or None if config.extra is not set to “allow”.

model_fields = {'ttl': FieldInfo(annotation=int, required=False, default=64, kw_only=True, metadata=[Ge(ge=0)])}
property model_fields_set: set[str]

Returns the set of fields that have been explicitly set on this model instance.

Returns:
A set of strings representing the fields that have been set,

i.e. that were not filled from defaults.

classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')

Generates a JSON schema for a model class.

Return type:

dict[str, Any]

Args:

by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of

GenerateJsonSchema with your desired modifications

mode: The mode in which to generate the schema.

Returns:

The JSON schema for the given model class.

classmethod model_parametrized_name(params)

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Return type:

str

Args:
params: Tuple of types of the class. Given a generic class

Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.

Returns:

String representing the new class where params are passed to cls as type variables.

Raises:

TypeError: Raised when trying to generate concrete names for non-generic models.

model_post_init(context, /)

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Return type:

None

classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Return type:

bool | None

Args:

force: Whether to force the rebuilding of the model schema, defaults to False. raise_errors: Whether to raise errors, defaults to True. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to None.

Returns:

Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)

Validate a pydantic model instance.

Return type:

Self

Args:

obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Raises:

ValidationError: If the object could not be validated.

Returns:

The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)
Return type:

Self

!!! abstract “Usage Documentation”

[JSON Parsing](../concepts/json.md#json-parsing)

Validate the given JSON data against the Pydantic model.

Args:

json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

Raises:

ValidationError: If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)

Validate the given object with string data against the Pydantic model.

Return type:

Self

Args:

obj: The object containing string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. by_alias: Whether to use the field’s alias when validating against the provided input data. by_name: Whether to use the field’s name when validating against the provided input data.

Returns:

The validated Pydantic model.

classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)
Return type:

Self

classmethod parse_obj(obj)
Return type:

Self

classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)
Return type:

Self

reduce_ttl()[source]

Reduce the TTL of the event by 1.

Return type:

None

classmethod schema(by_alias=True, ref_template='#/$defs/{model}')
Return type:

Dict[str, Any]

classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)
Return type:

str

ttl: int
classmethod update_forward_refs(**localns)
Return type:

None

classmethod validate(value)
Return type:

Self

class snakia.core.es.Filter(*args, **kwargs)[source]

Bases: Protocol, Generic[T_contra]

Filter for an event.

__init__(*args, **kwargs)
class snakia.core.es.Handler(*args, **kwargs)[source]

Bases: Protocol, Generic[T_contra]

Handler for an event.

__init__(*args, **kwargs)
class snakia.core.es.Subscriber(handler: Handler[T_contra], filters: Filter[T_contra] | None, priority: int)[source]

Bases: NamedTuple, Generic[T_contra]

Subscriber for an event.

count(value, /)

Return number of occurrences of value.

filters: Optional[Filter[TypeVar(T_contra, bound= Event, contravariant=True)]]

Alias for field number 1

handler: Handler[TypeVar(T_contra, bound= Event, contravariant=True)]

Alias for field number 0

index(value, start=0, stop=9223372036854775807, /)

Return first index of value.

Raises ValueError if the value is not present.

priority: int

Alias for field number 2

Modules

action

dispatcher

event

filter

handler

subscriber